tv [untitled] April 14, 2013 8:44am-9:14am PDT
8:44 am
frame and other elements that are together with the frame that help make them support; is that right? >> yes. that includes the walls, the floor diaphragms. but the fire was really bad. this is what they were trying to do here is a fire break here. in addition to the heroic fire break that stopped the fire on van ness. >> dynamited around here. not just earthquake or fire damage, it was dynamite damage. >> one of the interesting stories is the amount of dynamiting they were doing in some cases was so excessive it was damaging buildings that survived the earthquake and fire because they were blowing up the building 2 blocks away. the classic story is on the post office. it survived the earthquake and fire fine, but didn't survive the dynamiting of the next-door neighbor's building. >> they threw up flaming
8:45 am
shards. and set the buildings alight. >> for an old steel frame, you see the beam and column and you can see the frame is shown there. on the side of the building, it is more solid with brick. the older steel frame correct relies on participation of the infill masonry and other stuff in there. they new steel frame building 101 california the high-rise down the block relies basically on the steel. you don't have that infill brick because that becomes a hazard sometimes too if it falls away from the building. a newer steel frame building relies on the frame itself without infill. >> what that means is we're cutting thinner and thinner toward the acceptable level of safety. we're optimizing. i see that as reducing the comfort. i don't know. what do you think about that? >> i am in a 1920 steel frame building.
8:46 am
i am very comfortable being in it. i would be as comfortable being in a 1995 steel frame building. when they came out with computer programs and could analyze down to 10 significant figures are the buildings the engineering community scratched their head and said we did too good of a job. optimize it. >> we're near second. there is an interesting older building that is a tall steel frame building that was badly damaged. >> it was cracked. exterior walls were cracked. it was repaired. i was retained by the owner to investigate the building. in the robeling steel institute report it was identified as
8:47 am
damage identical to the '89 damage. what was fascinating is the fire damage inside. they had steel shutters and wire class. the floors where they closed the windose h windows had no fire damage. and without the windows closed had fire damage. >> in reading the reports, is that fire spread happens through openings and windows. we have lots of belliuildings w openeni openenings. if it was built that way we don't knock on the door say together is a hazard. it was built that way during the time. they're burning buildings with a fire-proof paint. if you coordinate that with wire glass or shutters or some kind of opening protection. i want to tell a story about the
8:48 am
building across the street. in the 1989 earthquake, it was damaged. the whole facade was cracked. you can look up there. maybe we can get shots. the cracks, you can see them underneath, between the windows, these are classic earthquake cracks. the owner of the building at the time didn't know what to do. we had it wrapped with chain link fence and had to close off a lane of mission street for a while. the owner couldn't figure out what to do. the building was so important to him and an emotional part of his life, that he hung on to it even though he had to make payments on it and paying money to do bracing. it finally drove him into bankruptcy. he died. his estate sold the building. buildings are more than buildings. they become part of people's lives. there are other issues. when engineers look at a building and say it is a crack here and it represents that.
8:49 am
it is the first step, we have found. in all the earthquake, the important question is what does this mean to the owner and people that use it and how will it fit back into the pattern of life. >> in '06, a lot of people committed suicide because they lost everything. >> it is not just the financial loss. it is the other loss that is meaningful. >> your homes, belongings. >> which is one of the reasons that pat and i say look at the marginal cost difference of improving your home or building to the point you can plan to use it after an earthquake. >> sleep in it. >> a home to go to and bed to lie in even if it has repair. >> that is a standard people ought to think about. >> the standard you ought to retrofit your house to is at the end of the nice you can climb into your bed. may not take a bath or shower but you can sleep in your bed. >> this is where we have an
8:50 am
all-week centennial convention to commemorate the earthquake but to look at the new advances in engineering and risk analysis and what it means for public policy. one of the things interesting is at this convention we see new products and technologies being brought forward. in my 25 years as a building inspector this is the most interesting. where something has changed. this is fire-proof paint they're demonstrating here. the building at the end, and the building at this end were both filled with some material, wood and excelier and stuff to start a fire. they lit them at the same time. four or five minutes ago. the building on the end is painted with regular latex paint on everybody's house. the building next to that is painted with latex paint. >> that is catching fire now. >> we can simulate the fire
8:51 am
spread from house to house. and we anticipate unfortunately again. the next 2 buildings are coated with the fireproof paint. many companies make this stuff. this is a particular brand made international fire resistance. >> they were generous to do the mock up for us. >> they have done this at the request of the building department. we have seen that the building at the end, just painted with latex paint is just about gone. the building next-door is catching fire and will burn through the wall shortly. the building at this end show smoking as the material inside burns. we will see where it goes from there. here we have someone from california oes and fire department. put your hand right up against the wall it is not even too hot to touch. thei the implications of this are dramatic. providing fire resistive
8:52 am
barriers is quite expensive. it requires sheetrock. >> pouring off the siding and putting it back. in san francisco we have zero lot lines. it is impossible. they have equipment to slide in and apply this material. >> we have used it a lot in san francisco for historic buildings where we want to preserve the detail. the trim and cove and ornamentation. you can improve the fire resistanceness of the building by having it applied by spray. >> we have tom here who is in charge of the fire training. what do you see going on >> four buildings made of the same material but protected by the same paint. >> now we have three buildings. >> yeah, three. there was four. >> right. this problem where we have fire spread from one building to the next building that is a san
8:53 am
francisco problem? >> yeah, in fact, there is probably more gap here between these buildings than there is in our normal -- >> which is usually a half an inch to an inch. >> right. >> sometimes they're separated at the ends and the fire is contained within the gap. you have a chimney build up. >> one of the things to point out they're using normal combustibles to start the fire which is wood and straw. in the year 2006 in people's home the normal combustible is not a class a material it is class c, which is the polystyrenes and foam materials. so the natural produced on the interior of the building is greater than what you see here today. >> if we fill this with sofa and couches. >> computers, kid furniture, teddy bears. >> okay. what is happening with the one with fireproof paint. i am amazed it is reflecting the heat. put your hand on the side and it
8:54 am
is deflecting it away. >> there is a flame inside. >> can we put our hand up there. >> at your own risk. >> i can. sure i can. not gonna catch fire. so the paint reflects the heat and also i understand it foams up and makes a protective foam layer as well. it is amazing stuff. >> we will be here quite a while. >> the fire is still burning inside strongly. the first building that they had the same materials, same construction, lit them at the same time. that one is nothing left. >> yeah. >> this has yet to ignite. it is offgassing and reflecting all the energy. >> in the middle, we are waiting to see if the fire spreads. it is spreading from the one end down. >> the second one has the same material for exposure.
8:55 am
it is comparing two buildings with the same protection, against two buildings with the same protection for the main fire building, one for exposure and next to it. the second one is catching. >> we have environmental factors effecting this. we have wind blowing in a certain direction. the exposure on the one next to it not really any heat. this is a good demonstration. >> the interesting deal right off the bat is that one burned down and this one -- >> has yet to ignite. >> i see spoke. >> just the products inside that are burning. >> wow. very exciting. >> so i can imagine -- i'm with the building department, there are real implication for providing fire resistive safety in buildings if we can figure out how to properly apply it and make sure people don't cut holes in it. >> there are fire service and dynamics that go there.
8:56 am
the building industry and manufacturers love the late weight trusses and guszet plates, things that perform great until you expose them to fire. firemen have to walk on these. >> more firemen have been killed because of building collapses than ever documented before. there are buildings engineered strong under normal conditions. add the fire component to it, and the fire -- the line is for a firefighter, the building is your enemy. know your enemy. if you know how it is put together you know how it will come apart. now you add this product -- >> a new unknown. i am not saying this is going to effect the building, but what is the offgassing right now. >> i read the test reports. there are issues. we have to look at the issues together. >> the second building finally caught. the material is available.
8:57 am
it is not, i believe intended to be used as an exterior -- you have to overpaint it because it doesn't have a uv protective barrier in it yet. if you put it up and overpaint it or put it between two buildings where there is no sunshining, it is okay. here is the guy that invented this stuff. this is a dramatic exhibition, are you satisfied. >> if we had more wind the other building would have flashed over sooner. it is still, to see it really engage this other building and you will see how will the coating holds up. i am impressed. >> everybody is. what is happening to the coated building. >> it is containing the fire to the room of origin. the crib in here is going out on its own. no flame spread or flash over. >> what kind of uses have you used this? what kind of buildings.
8:58 am
>> we have done elderly care facilities, hospitals, schools, a lot of church retrofits, litigation retrofits in which we bring up the walls to one and two-hour code. >> it is listed for one and two hour based on how thick you apply it. >> yes. we're good on lasting plastic, wood, foam, sheetrock. lasting structures. >> i will put my hand on here. it is definitely getting warm, getting hot. but not too hot to touch. in fact, the source of ignition inside is almost out. okay. that is about it for today. building san francisco walking tour. very exciting. we get to end with a splash, a blast here. >> someone else has to clean up. i love those kind of parties. >> they're putting out what is left of that and keeping it from blowing around.
8:59 am
9:00 am
>> san francisco is home to some of the most innovative companies of the 21st century. this pioneering and forward looking spirit is alive in san francisco government as well. the new headquarters of the san francisco public utilities commission at a5 25 golden gate avenue is more than just a 13-story building and office ablation. instead, city leaders, departments and project managers join forces with local architectural firms ked to build one of the greatest office buildings in america. that's more than a building.
9:01 am
that's a living system. ♪ ♪ when san francisco first bought this land in 1999, it was home to a state office building. >> this was an old eight-story brown building the state owned and the workers' comp people were in that building. it was an old dee correctvth it building for decades. when i was a member of the board of supervisors, all of us wondered why we hadn't done anything there and the mayor thought the same. >> if an earthquake happened, the building was uninhabitable. it sat there vacant for quite a while. the city decided to buy the building in 1999 for $2. we worked and looked at ways that we can utilize the building for an office building. to build an icon i can building that will house a lot of city departments. >> the san francisco public
9:02 am
utilities commission has an important job. we provide clean, pristine public drinking water to 2.6 million people in the san francisco bay area from the hetch hetchy regional water system. with also generate clean renewable energy for city services like public buses, hospitals, schools, and much more. and finally, we collect and treat all the city's wastewater and stormwater making it safe enough to discharge into the san francisco bay and pacific ocean. >> in 2006 the puc was planning a record number of projects. >> the public utilities commission is a very infrastructure-rich organization. we're out there rebuilding the water system. we've budget working on power generation in the country. we've been doing sewer for the city. we're looking at a brand-new rebuild of all watt systems in san francisco and we haven't had a home that's been other than mental. >> they staff over 900 people. the puc is in two office locations. >> you know, this is such a great place for a building.
9:03 am
if the puc owned that building and we could make that the icon i can sustainable building puc represents, wouldn't be a dramatic idea? >> so, one of the major decisions we made was we wanted to make a statement with this building. we wanted this building to be a lead platinum building which is very few buildings in san francisco that achieved this mark. >> leadership and energy environmental design, it takes a look at the way we think about the places where we live and work. i like to think of it as designed for human and environmental health. lead addresses five categories that enhances environment. indoor air quality, energy, water, materials and resources, and sustainable sites are the five categories for the lead. you can go for several gold or platinum certifications. >> the city wanted to be silver lead status. . maybe gold was a stretch. and people said, if we're going
9:04 am
to be a sustainable organization that the pucs this has got to be the top of the line. it's got to be a lead platinum building. what does that mean to us? we run water, power, and sewer. so, those are some of the biggest things involved in lead platinum. ♪ ♪ >> by late 2008 the project, as we got the contractor on board and we were able to start pricing it, we're a multi-, multi-, multi-million dollar over budget. >> the story a lot of people don't know after we got select today do this project, the first price we came in with was $180 million. and the city said, you know, this is a great building, but we just don't want to spend that much money. so, the project was on the verge of being canceled. >> if you're looking at why this building came to be, in many ways it also included mayor gavin newsome, particularly, who really had an affection for this building.
9:05 am
he saw the design. he saw the potential. he wanted to make sure that that building got built. and he said, do what you need to do, but please, if you can make that building work, we need to have that building in civic center. >> i happened to be at a green conference santa clara. he said you shouldn't cancel that project. can you work with us? michael cohen phoned me up the next day. can we cut $40 million out of this project? it was one person more responsible than any others, it's tony irons, was the architect that was responsible for the revitalization of city hall who came to my office and said, we cannot abandon this. we can't walk away from this project. we have an opportunity to really take a lot of our values and principles, particularly raising the bar as we did as a city on our green building standards, mandating the most aggressive green building standards for private construction anywhere in the united states. and showcasing them in this new building. >> the city for the sfpuc, it
9:06 am
was critical that the building stay as a lead building. the easiest thing to do to cut out millions of dollars, let's just go from lead platinum to lead gold. but that wasn't the objective. this needed to be the best example of energy conservation of any office building in the united states. >> we became involved in the san francisco public utilities headquarter project during the time when the project was at a stand still for a number of reasons, largely due to budget issues. and at the time we were asked to consider an alternative design using concrete rather than the scheme that was potentially planned for previous to that, which was a steel frame structure that used hydraulic dampers to control seismic motion. >> so, i met with my team. we worked hard. we came up with a great idea. let's take out the heavy steel structure, let's put in an innovative vertical post tension concrete structure,
9:07 am
great idea. we did that. a lot of other things. and we came up with a price of 140 million. so, we achieved that goal. and, so, when we first started looking at the building, it was going to cost a lot of money. because of the way it was being built, we could only get 12 floors. we wanted more space for our employees. we ended up going and saying, okay, if we do a concrete building instead, which was web core's idea, we can get 13 floors, not 12 floors. the concrete doesn't require much space between the floors as a steel building does. and it could be cheaper. yes, more space, less money, great idea. ♪ ♪ >> we know that right now there are things happening in power, with sewer, with water that are not always proven technologies, but they're things that are enough proven you should take a bit of a risk and you should show others it can be done. >> we're showing the world, suddenly had wind turbines which they didn't have before.
9:08 am
so, our team realizing that time would change, and realizing where the opportunities were today, we said, you know what, we started out as really something to control wind as an asset, when you combine today's technology becomes something entirely different. >> wind turbines in an urban environment is a relatively new concept. there are a few buildings in other major cities where they have installed wind turbines on the roof. and wind turbines in buildings are effective. >> the discussion was do we do that or not? and the answer was, of course. if they're not perfect yet, they're building a building that will last 100 years. in 100 years someone is going to perfect wind efficient turbines. if these aren't right, we'll replace them. we have time to do that. >> the building that's two renewable energy generations. wind turbines located on the north facade. two different levels of photo volume takes.
9:09 am
>> we have over 600 solar panels and three platforms on the building, and four integrated wind turbines. the wind turbines and the solar panels produce 7% of the building's energy. and we're reducing the use of energy here by 32% in the office building. >> the entire building is controlled by a complex computer system which monitors and adjusts air, heating and lights as well as indoor shades. >> the building is going to be a smart building. it's going to have all integrated features. so, it has a monitor on the roof that knows where the sun is. as it gets warmer or colder, it heats and cools the building. as it gets lighter, shades can go up or down to make sure that you're not over using any kind of heat or air conditioning, but as it gets darker the shades can go back up. the lights inside the building
9:10 am
self-adjust depending how close they are to the light sources outside, how light it is, how dark it is. so, you're not using energy more than you need. >> we also have occupancy sensors. if nobody is in that room, lights turn off. it's likely to have sustainable features. it's another thing to have an integrated systems sustainability. >> when you have a building that's lead platinum, there are a couple themes important. one is daylight harvesting where you harvest the daylight and have it penetrate the building so that people have views, they see sunlight, which means that partitions and workstations are much lower so that people can see. >> so, human comfort combined with light reduction, the amount of electric light reduction, all with the aim of creating, you know, a marvelous workplace that people want to come to, feel comfortable working in, thrive at what they're doing, all kind of
9:11 am
integrate together. and the daylighting lighting strategy is a very important part of that equation. >> one of the keys to this building is that we're maximizing the use of natural daylight to light the building. >> here in our south facade we have light shells. they help shade the floor, but as well light bounces off of the light shells into the interior of the floor providing more daylight into the interior of the floor. lighting is both the greatest use of energy consumption in an office building, but it also contributes to the largest amount of heat gain in the building. we're maximizing the use of natural daylighting. we also have light sensors that minimize the use of artificial lighting. >> by having light outside the building skin, what that does is we are mitigating it before it hits the glass. we have a high performance, low formal gain graph. the system does not have to
9:12 am
work as much to either cool the building or heat the building. >> this building also incorporates or utilizes under floor system for delivery of heating and cooling to the building. this in conjunction with the high efficiency equipment that we've installed in the building reduces the consumption of energy for heating and cooling by 51%. >> we have two destination elevators. destination elevator save 35 to 40% of the electrical energy over traditional elevator. these elevators save energy by using a regenerative drive. when the cars are going up empty or down full of people, they generate electricity that goes back into the building grid. these elevators have energy by grouping people going to the same floor in the same cab. and the way they work is you have a shared elevator call button in the lobby. you would indicate which floor you're going to, for instance like 3, and it will direct me to elevator c. so, i'll go to an elevator with people that are going to that
9:13 am
same floor. what's also interesting is inside the elevator floor cab there are no selection buttons because i selected my floor in the lobby. this takes some getting used to as we're all accustomed to choosing our floor inside the elevator cabs. ♪ ♪ >> another thing we saut that was a challenge for this building was the permitting process for the delivery machine to use reclaimed water in an office building. and i think that we really broke the ground for future use to be much more commonplace for utilization of reclaimed water in office buildings. this building uses 60% less water than a typical osv building. that's achieved by using rainwater for landscaping, treating wastewater on-site for reuse in the building's toilets. >> the machine is an ecic
58 Views
IN COLLECTIONS
SFGTV2: San Francisco Government TelevisionUploaded by TV Archive on
![](http://athena.archive.org/0.gif?kind=track_js&track_js_case=control&cache_bust=447886385)